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Abstract 
A simple and comprehensive introduction of the Finite Element Method for undergraduate courses is proposed. 

With very simple mathematics, students can easily understand it. The primary objective is to make students 

comfortable with the approach and cognizant of its potentials. The technique is based on the general overview of 

the steps involved in the solution of a typical finite element problem. This is followed by simple examples of 

mathematical developments which allow developing and demonstrating the major aspects of the finite element 

approach unencumbered by complicating factors. 

Index Terms– Finite Element Method, Undergraduate Courses, Numerical Analysis, Teaching Methods and 

Technique. 

 

I. INTRODUCTION 
In a simplified view, the engineer transforms a 

physical problem into a mathematical model using 

the knowledge of the laws of the physics and 

chemistry. It is necessary that this model pass a 

resolution phase to reach a solution. In this phase, the 

numerical methods enter predominantly where great 

limitations in the analytical and algebraic 

mathematical methods exist. Nowadays, in addition 

to the high complexity of practical problems, there is 

an increasing demand for effectiveness from modern 

engineering designs. In this circumstance, numerical 

solutions are the only alternatives available.  

 

 

 

 

Modeling Phase              Resolution Phase 

Fig. 1 - Phases for the resolution of a problem. 

 

Designers of electrical equipment for power 

applications have to satisfy the customer in a number 

of points and aim, of course, to do so better than the 

competition. Typical criteria, a number of which will 

appear in combination in most cases, include: low 

operating cost, low initial cost, high efficiency, high 

reliability, minimum weight, volume or diameter, 

close tolerances to performance specifications and 

parameters, tolerance to occasional severe abnormal 

conditions, ability to generate voltage with low 

harmonic distortion and ability to operate 

satisfactorily from a non-sinusoidal supply. 

New types of machines are being developed and 

applied, such as permanent magnet machines and 

reluctance motors. In defense applications, leakage 

fields and magnetic signatures may be important. 

Leakage fields may also be important in traction 

applications which humans may be close to the drive 

equipment. Electromagnetic interference is of 

growing importance. 

It is clear that in many, if not most cases, it is 

essential to be able to analyze any proposed design in 

considerable detail, so that near optimal results may 

be obtained. This becomes especially important for 

large or special-purpose equipment with which cut-

and-try methods are impossible or prohibitively 

expensive. Many of the critical factors mentioned 

above are dependent on magnetic and electric field 

distribution and the calculation of these quantities 

with the accuracy now required cannot be carried out 

by analytical procedures. The difficulties born by 

factors such as complicated geometry, saturation 

effects in iron, the presence of solid material in which 

eddy currents can be induced, and in some cases, 

three-dimensional effects, mean that a numerical 

method is required. [8] 

If a designer is to achieve the aims outlined 

above, it is needed a design tool which will take the 

following into account: irregular geometric shapes of 

components, non-linearity of magnetic or electric 

materials, induced currents in non-regular 

components, anisotropic materials or structures, 

external circuits, integration of thermal and 

mechanical effects and non-sinusoidal time variation 

of currents and fields. 

Obviously the list above eliminates analytic 

techniques unable to deal with irregular geometry and 

non-linear materials. However, numerical methods 

are capable of modeling the true geometry of the 

design in two and three dimensions. Non-linear 

characteristics of materials can be allowed for 

through iterative schemes such as the Newton-

Raphson method and the non-sinusoidal time 

variation represented by time-stepping techniques. 

Anisotropic materials and structures, induced 
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currents and external circuits can also be included in 

numerical treatments. 

II. FINITE ELEMENT METHOD 
Having established that numerical techniques are 

essential for an ease of advanced design, the question 

is which one to choose. Several methods have been 

known for some 40 years and the advent of fast 

digital computers has encouraged and facilitated their 

development. The main numerical methods available 

are: finite difference, finite element and boundary 

element. 

All have their advantages and disadvantages, a 

fact which makes a choice difficult. However, the 

Finite Element Method (FEM) incorporates most of 

the advantages of the two other techniques without 

incurring into significant disadvantages. For instance, 

the finite difference technique is not easily applicable 

to modeling irregular geometries which include slants 

and curved surfaces. Nodal distribution can be very 

inefficient. This is not so with finite elements. 

Equally, the boundary element method can efficiently 

model regions in which the material properties are 

linear, but it is not efficient at handling non-linear 

materials. Again, FEM is well suited to modeling 

non-linear materials. Thus, without considering the 

pros and cons of each method in detail, it is accepted 

that the FEM is important to the needs of designers.  

In contrast to finite-difference techniques, the 

FEM divides the solution domain into simply shaped 

regions, or elements. An approximate solution for 

partial differential equations can be developed for 

each of these elements. Linking together, or 

assembling these individual solutions ensures the 

continuity at the interelement boundaries to generate 

the total solution. Thus, the partial differential 

equations are satisfied in a piecewise fashion. The 

use of elements, rather than a rectangular grid, 

provides a much better approximation for irregularly 

shared systems. Further, unknown values can be 

generated continuously across the entire solution 

domain rather than at isolated points.  

Although the particulars will vary, the 

implementation of the finite-element approach 

usually follows a standard step-by-step procedure. 

The following provides a brief overview of each of 

these steps. The steps for the application of the finite 

elements methods are: 

 

Preprocessing:  
 - Definition of the problem and the domain  

 - Discretization or division of the domain into 

elements  

         - One-Dimension (Line element) 

         - Two Dimensions (Triangular or Quadrilateral 

element) 

         - Three Dimensions (Tetrahedron or 

Hexahedron element) 

 

Processing: 
- To get the Element Equations [k]{u}={f} 

                - Choice of Approximation Functions (linear 

functions-straight and plans) 

         - Obtaining an Optimal Fit of Approximation 

Functions to the Solution  

  - Direct Approach 

                   - Method of Weighted Residuals 

           - Collocation Approach 

                            - Sub domain Method 

           - Least-Squares Methods 

           - Galekin’s Methods 

  - Variational techniques 

         - Rayleigh-Ritz’s Method  

- Assembly or Link Together the Element Equations 

[K]{U}={F} 

- Incorporation of the Initial and Boundary 

Conditions [K’]{U’}={F’} 

- Solution of the linear system (or not linear). {U’} 

 

Post processing:  

 - Presentation of results or graphical visualization 

 - Determination of secondary variable. 

 

Where: - Lowercase terms:  

[k] = an element property or stiffness matrix, 

{u}= a column vector unknowns at the nodes and, 

{f}= a column vector reflecting the effect of any 

external influences applied at the nodes. 

 - Uppercase terms:  

[K] = the assemblage property matrix, 

{U} = Column vectors for unknowns,  

{F} = Column vectors for external forces and 

[K’], {U’} and {F’} = boundary conditions have been 

incorporated. 

 

III. CHOICE OF APPROXIMATION 

FUNCTIONS. [1] 
Because it is easy to manipulate mathematically, 

polynomials are often employed for this purpose. For 

the one-dimensional case, the simplest alternative is a 

first order polynomial or straight line, 

xaaxu 10)(                                                     (1) 

Where u (x) = the dependent variable, ao and a1 = 

constants, and x = the independent variable. This 

function must pass through the values of u (x) at the 

end points of the element at x1 and x2. Therefore, 

        21021101 xaauxaau         

   Where u1 = u(x1) and u2 = u(x2). These equations 

can be solved using Cramer’s rule for 

)/()(   )/()( 121211212210 xxuuaxxxuxua 

   These results can then be substituted into Eq. (1), 

which, after collection of terms, can be written as 

2211 uNuNu                                                   

(2) 

Where 
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)/()( 1221 xxxxN                                       

(3) 

and 

)/()( 1212 xxxxN                                      (4) 

Equation (2) is called an approximation, or 

shape, function and N1 and N2 are called interpolation 

functions. Close inspection reveals that Eq. (2) is, in 

fact, the Lagrange first-order interpolating 

polynomial. It provides a means to predict 

intermediate values (that is, to interpolate) between 

given values u1 and u2 at the nodes. 

   In addition, the fact that it is dealing with linear 

equation facilitates operations such as differentiation 

and integration. The derivative of Eq. (2) is 

2
2

1
1 u

dx

dN
u

dx

dN

dx

du
                                        (5) 

   According to Eqs. (3) and (4), the derivatives of the 

N’s can be calculated as 

12

2

12

1 1
        

1

xxdx

dN

xxdx

dN





             (6) 

and, therefore, the derivative of u is 

)(
1

21

12

uu
xxdx

du



                                     (7) 

   In other words, it is a divided difference 

representing the slope of the straight line connecting 

the nodes. The integral can be expressed as 

dxuNuNudx

x

x

x

x

  2211

2

1

2

1

   

   Each term on the right-hand side is merely the 

integral of right triangle with base x2-x1 and height u. 

That is, 

uxxNudx

x

x

)(
2

1
12

2

1

  

   Thus, the entire integral is 

)(
2

12
21

2

1

xx
uu

udx

x

x




                                  (8) 

In other words, it is simply the trapezoidal rule. 

Just as for the one-dimensional case, the next 

step is to develop an equation to approximate the 

solution for the element. For a triangular element, the 

simplest approach is the linear polynomial. 

   u(x, y) = a0 + a1,1x + a1,2y                                                       

where u(x, y) = the dependent variable, a’s = 

coefficients, and x and y = independent variables. 

This function must pass through the values of u(x,y) 

at the triangle’s nodes (x1, y1), (x2, y2), and (x3, y3). 

Therefore, 

   u1(x, y) = a0 + a1,1x1 + a1,2 y1 

   u2(x, y) = a0 + a1,1x2 + a1,2 y2 

   u3(x, y) = a0 + a1,1x3 + a1,2 y3 

or in matrix form, 


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which can be solved for 

)]()(

)([
2

1

1221331132

233210

yxyxuyxyxu
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A
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e


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)]()()([
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1
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a
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

 

where Ae is the area of the triangular element: 

)]()()[(
2

1
122131132332 yxyxyxyxyxyxAe 

   Equations above can be substituted into u(x,y). 

After collection of terms, the result can be expressed 

as 

   u = N1u1 + N2u2 + N3u3                                   

where 

])()()[(
2

1
233223321 yxxxyyyxyx

A
N

e



 

])()()[(
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1
311331132 yxxxyyyxyx
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e


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1
122112213 yxxxyyyxyx
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N

e



 

Equation u = N1u1 + N2u2 + N3u3 provides a 

means to predict intermediate values for the element 

on the basis of the values at its nodes. Figure 2 shows 

the shape function along with the corresponding 

interpolation functions. Notice that the sum of the 

interpolation functions is always equal to 1. As with 

the one-dimensional case, various methods are 

available for developing element equations based on 

the underlying PDE and the approximating functions. 

The resulting equations are considerably more 

complicated than the one-dimensional case. 

However, because the approximating functions are 

usually lower-order polynomials, the terms of the 

final element matrix will consist of lower-order 

polynomials and constants. 
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Fig. 2 : A linear approximation function for a 

triangular element. The corresponding interpolation 

functions are show in (b) through (d).[1] 

 

IV. THE METHODS OF WEIGHTED 

RESIDUALS. 
The differential equations, for example 

)(
2

2

xf
dx

Td
                                                       (9) 

can be expressed as : 

0)(
2

2

 xf
dx

Td
                                             (10) 

   The approximate solution (straight line) can be 

substituted into this equation. Because the 

approximation function is not the exact solution, the 

left side of the resulting equation will not be zero but 

will equal a residual, 

)(
2

2

xf
dx

Td
R                                               (11) 

The methods of weighted residuals  consists of 

finding a minimum for the residual according to the 

general formula 

midDRW
D

i  ..., 2, 1,              0              (12) 

where D = the solution domain and the Wi = linearly 

independent weighting functions. 

At this point, there are a variety of choices that 

could be made for the weighting function. Several 

choices can be made for the weighting functions of 

Eq. (12). Each represents an alternative approach for 

the method. 

In the collocation approach, it chooses as many 

locations as there are unknown coefficients. Then, the 

coefficients are adjusted until the residual vanishes at 

each of these locations. Consequently, the 

approximating function will yield prefect results at 

the chosen locations but will have a nonzero residual 

elsewhere. Thus, it is akin to the interpolation 

methods. Note that collocation amounts to using the 

weighting function 

niparaxxW ii ,...,2,1          )(           (13) 

where n = the number of  unknown coefficients and 

(x-xi) = the Dirac delta function that vanishes 

everywhere but at x=xi, where it equals 1. 

In the sub domain methods the interval is divided 

into as many segments, or sub domains, as there are 

unknown coefficients. Then, the coefficients are 

adjusted until the average value of the residual is zero 

in each sub domain. Thus, for each sub domain, the 

weighting function is equal to 1 and Eq. (12) is 

niparaRdx
i

i

x

x

,...,2,1         0

1




                 (14) 

   Where xi-1 and xi are the bounds of the sub domain. 

For the least-square case, the coefficients are 

adjusted so as to minimize the integral of the square 

of the residual. Thus, the weighting functions are 

i

i
a

R
W




                                                         (15) 

which can be substituted into Eq. (12) to give 

nidDR
a

dD
a

R
R

DiD i

,...,2,1        02 








      (16) 

Comparison of the formulation shows that this is 

the continuous form of regression. 

Galerkin’s methods employ the interpolation 

functions Ni as weighting function. Recall that these 

functions always sum to 1 as any position in an 

element. For many problem contexts. Galerkin’s 

methods yield the same results as are obtained by 

variational methods. Consequently, it is the most 

commonly employed version of methods weighting 

residual used in finite-element analysis. 

 

V. THE ELLIPTIC EQUATION [2] 
The basic elliptic equation  is 

 in       ).( fauuc                          (17) 

where  is a bounded domain in the plane (xy). c, a, 

f, and the unknown solution u are complex functions 

defined on . c can also be a N-by-N matrix function 

on  [2]. The boundary conditions specify a 

combination of u and its normal derivative on the 

boundary: 

Dirichlet: hu = r on the boundary . 

Generalized Neumann: gquucn  ).(


 on . 

Mixed: Only applicable to systems. A combination of 

Dirichlet and generalized Neumann. 

n


 is the outward unit normal. g, q, h, and r are 

functions defined on . 
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Its nomenclature deviates slightly from the 

tradition for potential theory, where a Neumann 

condition usually refers to the case q = 0 and its 

Neumann would be called a mixed condition. In 

some contexts, the generalized Neumann boundary 

conditions are also referred to as the Robin boundary 

conditions. In variational calculus, Dirichlet 

conditions are also called essential boundary 

conditions and restrict the trial space. Neumann 

conditions are also called natural conditions and arise 

as necessary conditions for a solution. The variational 

form of the equation with Neumann conditions is 

given below. 

The approximate solution to the elliptic PDE 

(Partial Differential Equations) is found in three 

steps: 

a) Describe the geometry of the domain  and the 

boundary conditions.  

b) Build a triangular mesh on the domain . It has 

mesh generating and mesh refining facilities. A 

mesh is described by three matrices of fixed 

format that contain information about the mesh 

points, the boundary segments, and the triangles. 

c) Discretize the PDE and the boundary conditions 

to obtain a linear system Ku = F. The unknown 

vector u contains the values of the approximate 

solution at the mesh points, the matrix K is 

assembled from the coefficients c, a, h, and q 

and the right-hand side F contains, essentially, 

averages of  f around each mesh point and 

contributions from g. Once the matrices K and F 

are assembled, it can to solve the linear system 

and further process the solution. 

More elaborate applications make use of the 

FEM-specific information returned by the different 

functions . Therefore it quickly summarizes the 

theory and technique of FEM solvers to enable 

advanced applications to make full use of the 

computed quantities. FEM can be summarized in the 

following sentence: Project the weak form of the 

differential equation onto a finite-dimensional 

function space. The rest of this section deals with 

explaining the above statement. 

It starts with the weak form of the differential 

equation. Without restricting the generality, it 

assumes generalized Neumann conditions on the 

whole boundary, since Dirichlet conditions can be 

approximated by generalized Neumann conditions. In 

the simple case of a unit matrix h, setting g = qr and 

then letting q  yields the Dirichlet condition 

because division with a very large q cancels the 

normal derivative terms. 

Assume that u is a solution of the differential 

equation. Multiply the equation with an arbitrary test 

function v and integrate on : 

 
 

 dfvdauvvuc     )).((           (18) 

   Integrate by parts (i.e., use Green’s formula) and 

the boundary integral can be replaced by the 

boundary condition: 













dfv

dvgqudauvvuc

 

 )( ).(

    (19) 

   Replace the original problem with: Find u such that 

vvdgqu

fvdauvvuc








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 ,0)(
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                        (20) 

This equation is called the variational, or weak, 

form of the differential equation. Obviously, any 

solution of the differential equation is also a solution 

of the variational problem. The reverse is true under 

some restrictions on the domain and on the 

coefficient functions. The solution of the variational 

problem is also called the weak solution of the 

differential equation. 

The solution u and the test functions v belong to 

some function space V. The next step is to choose an 

Np -dimensional subspace VV
pN   . Project the 

weak form of the differential equation onto a finite-

dimensional function space simply means requesting 

u and v to lie in 
pNV  rather than V. The solution of 

the finite dimensional problem turns out to be the 

element of 
pNV  that lies closest to the weak solution 

when measured in the energy norm (see below). 

Convergence is guaranteed if the space 
pNV  tends to 

V as pN  . Since the differential operator is 

linear, it demands that the variational equation is 

satisfied for  Np test-functions 
pNi V  that form a 

basis, i.e., 






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
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

          (21) 

   Expand u in the same basis of  
pNV  


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j
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   Use the following notations: 



















dgGdfFdq

da

dcK

iiiiij

ij

ijji







      Q

matrix)  (Mass         M

matrix)   (Stiffness     ).(

ji,

ji,

,

 

and rewrite the system in the form (K + M + Q)U = 

F + G.  K, M, and Q are Np -by-Np matrices, and F 

and G are Np -vectors.  When it is not necessary to 

distinguish K, M, and Q or F and G, it collapses the 

notations to KU = F. [2] 

When the problem is self-adjoint and elliptic in 

the usual mathematical sense, the matrix K + M + Q 

becomes symmetric and positive definite. Many 

common problems have these characteristics, most 

notably those that can also be formulated as 

minimization problems. For the case of a scalar 

equation, K, M, and Q are obviously symmetric. If 

c(x,y)> 0, a(x,y)0 and q(x,y)0 with q(x,y)>0 on 

some part of , then, if U0. 

.0 if  ,0

)(

222







Udqudauuc

UQMKU T

                           

                                                                         (23) 

U
T
 (K + M + Q)U is the energy norm. There are 

many choices of the test-function spaces. It uses 

continuous functions that are linear on each triangle 

of the mesh. Piecewise linearity guarantees that the 

integrals defining the stiffness matrix K exist. 

Projection onto 
pNV  is nothing more than linear 

interpolation, and the evaluation of the solution 

inside a triangle is done just in terms of the nodal 

values. If the mesh is uniformly refined, 

pNV approximates the set of smooth functions on . 

   A suitable basis for 
pNV is the set of “tent” or “hat” 

functions i . These are linear on each triangle and 

take the value 0 at all nodes xj,yj except for xi,yi . 

Requesting  i(xj,yj) = 1 yields the very pleasant 

property 





pN

j

iiijjii UyxUyxu
1

,),(),(                  (24) 

i.e., by solving the FEM system it obtains the nodal 

values of the approximate solution. Finally note that 

the basis function i vanishes on all the triangles that 

do not contain the node xi . The immediate 

consequence is that the integrals appearing in Ki,j , 

Mi,j, Qi,j, Fi and Gi only need to be computed on the 

triangles that contain the node xi . Secondly, it means 

that Ki, j and Mi, j are zero unless xi,yi and xj,yj are 

vertices of the same triangle and thus K and M are 

very sparse matrices. Its sparse structure depends on 

the ordering of the indices of the mesh points. 

The integrals in the FEM matrices are computed 

by adding the contributions from each triangle to the 

corresponding entries (i.e., only if the corresponding 

mesh point is a vertex of the triangle). This process is 

commonly called assembling. 

The assembling scans the triangles of the mesh. 

For each triangle it computes the so-called local 

matrices (The local 3-by-3 matrices contain the 

integrals evaluated only on the current triangle. The 

coefficients are assumed constant on the triangle and 

it is evaluated only in the triangle barycenter.) and 

add its components to the correct positions in the 

sparse matrices or vectors. The integrals are 

computed using the mid-point rule. This 

approximation is optimal since it has the same order 

of accuracy as the piecewise linear interpolation. 

Consider a triangle given by the nodes P1, P2, 

and P3 as in the following figure 3. 

                                  P1            Pb 

                                        Pc           

                                                             P2 

                                                              y1 

             P3                    x1     

Fig. 3: The local triangle P1P2P3 [2]. 

 

   The simplest computations are for the local mass 

matrix m: 
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where Pc is the center of mass of P1P2P3 , i.e., 

3

321 PPP
Pc


  

   The contribution to the right-hand side F is just 

3

)(
)( 321 PPParea

Pff ci


                             (26) 

For the local stiffness matrix it has to evaluate 

the gradients of the basis functions that do not vanish 

on P1P2P3. Since the basis functions are linear on the 

triangle P1P2P3, the gradients are constants. Denote 

the basis functions 1, 2, and 3  such that i(Pi ) = 1. 

If P2 – P3 = [x1,y1]
T
 then it has that 
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and after integration (taking c as a constant matrix on 

the triangle) [2] 
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                                                                         (28) 

If two vertices of the triangle lie on the boundary 

, it contributes to the line integrals associated to 

the boundary conditions. If the two boundary points 

are P1 and P2 , then it has 
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and 

2,1,      ,
2

)(
21




 ji
PP

PgG bi                (30) 

where Pb id the mid-point of P1P2. 

For each triangle the vertices Pm of the local 

triangle correspond to the indices im of the mesh 

points. The contributions of the individual triangle 

are added to the matrices such that, e.g., 

3,2,1,      ,,,,  nmkKK nmii

t

ii nmnm
         (31) 

The Dirichlet boundary conditions are treated in 

a slightly different manner. It is eliminated from the 

linear system by a procedure that yields a symmetric, 

reduced system. It can return matrices K, F, B, and ud 

such that the solution is u = Bv + ud where Kv = F. u 

is an Np -vector, and if the rank of the Dirichlet 

conditions is rD, then v has Np – rD components. 

 

VI. THE PARABOLIC EQUATION [2] 
The elliptic solver allows other types of 

equations to be more or less easily implemented. 

Below it shows how the parabolic equation can be 

reduced to solving elliptic equations. This is done by 

the function parabolic [2].  Consider the equation 





in      ).( fauuc

t

u
d                 (32) 

with the initial condition 

 yxyxuyxu ,        ),()0,,( 0  

and boundary conditions of the same kind as for the 

elliptic equation on . 

   The heat equation reads 

fuuhuk
t

u
C 



 )().(               (33) 

in the presence of distributed heat loss to the 

surroundings.  is the density, C thermal capacity, k 

thermal conductivity, h film coefficient, u ambient 

temperature, and f heat source. 

For time-independent coefficients, the steady 

state solution of the equation is the solution to its 

standard elliptic equation 

.).( fauuc                                          (34) 

Assuming a triangular mesh on  and at any 

time 0t , expand the solution to the partial 

differential equations (as a function of x,y) in the 

Finite Element Method basis: 


i

ji yxtUtyxu ),()(),,(                           (35) 

   Plugging the expansion into the PDE, multiplying 

with a test function j, integrating over  and 

applying Green’s formula and the boundary 

conditions yield: 
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                                                                         (36) 

In matrix notation, it has to solve the linear, 

large and sparse ordinaries differential equations 

system 

.FKU
dt

dU
M                                         (37) 

   This method is traditionally called method of lines 

semidiscretization. 

   Solving the ODE (Ordinaries Differential 

Equations)  with the initial value 

),()0( 0 iii yxuU                                             (38) 

yields the solution to the PDE at each node xi,yi and 

time t. Note that K and F are the stiffness matrix and 

the right-hand side of the elliptic problem 

 in    ).( fauuc                              (39)                           

With the original boundary conditions while M is 

just the mass matrix of the problem 

.in    0)0.(  duu                             (40) 

When the Dirichlet conditions are time 

dependent, F contains contributions from time 

derivatives of h and r. These derivatives are evaluated 

by finite differences of the user-specified data. [2] 

   The ODE system is ill conditioned. Explicit time 

integrators are forced by stability requirements to 

very short time steps while implicit solvers can be 

expensive since it solves an elliptic problem at every 

time step. The numerical integration of the ODE 

system is performed. Suite functions, which are 

efficient for this class of problems. The time-step is 

controlled to satisfy a tolerance on the error, and 

factorizations of coefficient matrices are performed 

only when necessary. When coefficients are time 

dependent, the necessity of re-evaluating and re-

factorizing the matrices each time-step may still 

make the solution time consuming, although 

parabolic re-evaluates only that which varies with 

time. In certain cases a time-dependent Dirichlet 

matrix h(t) may cause the error control to fail, even if 

the problem is mathematically sound and the solution 

u(t) is smooth. This can happen because the ODE 

integrator looks only at the reduced solution v with u 

= Bv + ud. As h changes, the pivoting scheme 

employed for numerical stability may change the 

elimination order from one step to the next. This 

means that B,v and ud all change discontinuously, 

although u itself does not. [2] 

   Using the same ideas as for the parabolic equation, 

hyperbolic implements the numerical solution of with 
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the initial conditions and usual boundary conditions. 

In particular, solutions of the equation 

0 ucutt are waves moving with speed c  . 

  

VII. CONCLUSION 
With the fast scientific and technological 

advance of the last years, many subjects have become 

sufficiently complex and accessible only to a small 

number of specialists in the area. For the scientific 

development to continue, it is essential new study 

techniques and methodologies fit to passing this 

knowledge on in an easy and fast way to make it 

accessible to a great number of people, either 

professionals or students. 

There are no readymade teaching formulas, each 

lesson is a unique and brief process of interaction 

between teachers and students, because it depends on 

their personal features. However, methodologies, 

suggestions and experiences can be gathered to help 

teaching, thus facilitating the process of knowledge 

transference. 

Initially, FEM was conceived as a mathematical 

artifice for the calculation of structures, and later 

became a powerful instrument for the resolution of 

partial derivatives equations, so common in the 

physics of the continuous bodies. Either in civil, 

electrical, mechanical engineering or in problems of 

movement of solid or fluid bodies in 

thermodynamics, the electromagnetism of the static 

fields or of propagation, FEM represents an almost 

universal tool for the pre-determination of the 

physical behavior of the objects under study. The 

recent development of CAE techniques (Computer 

Aided Engineering) has allowed the integration of the 

different algorithms of calculation and their 

association with the modern interactive graphical 

methods to free the engineer from all the tiring tasks 

of programming. Inside this integration, FEM uses all 

its power to facilitate the direct passage from the 

model to the conception. 

This article presents forms of teaching FEM in 

undergraduate engineering courses. It propose a new 

teaching technique to approach of the necessary 

mathematics and its use in an elementary way. It is 

suggested that the subject be given in courses such as 

Numerical Analysis, Numerical Calculus and 

Numerical Methods. 

To sum up, the article presents two conclusions: 

first, that it is important to develop efficient teaching 

methods for FEM as early as in engineering 

undergraduate courses, and second, that FEM 

represents an important advance in the syllabus of 

disciplines like numerical analysis, numerical 

calculus and numerical methods in undergraduate 

courses. 
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